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A procedure and related theories are developed to find the loci of optimal support
positions for a structure to maximize its fundamental eigenvalue by increasing the support
stiffness. The concept of limit eigenvalue, which is the upper bound of fundamental
eigenvalue achieved by adding supports, is introduced. A condition is derived on which the
fundamental eigenvalue can be reached to its limit eigenvalue. A sensitivity formula of
eigenvalues with respect to the change of support positions is also derived to set up an
optimization problem and to obtain its optimal support positions. It is found that the loci
of m supports start from the maximum displacement position of the structure’s first
eigenfunction and end at certain positions on the nodal line of its (m+1)th eigenfunction
if the fundamental eigenvalue can reach its limit eigenvalue. The suggested method is tested
to find the loci for a beam and a plate structure.
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1. INTRODUCTION

The design concept to increase the fundamental natural frequency or eigenvalue of a
structure as high as possible is commonly adopted to make the structure better in dynamic
environment. The eigenvalue shift is achieved by changing the size, shape, and boundary
conditions of a structure. Adding and/or changing support positions are also frequently
used when the size or shape of the structure cannot be altered due to design limitations.

There have been some studies concerning the design issues of supports in a somewhat
different aspect. Szelag and Mroz [1] is one of the earlier studies on this topic. They have
treated optimal design problems of vibrating beams having unspecified thickness and
lengths as well as supports whose positions and stiffnesses are to be determined. They have
also shown that bimodal solutions occur in designing the elastic support. Akesson and
Olhoff [2] have studied to find optimal support locations of a beam for the maximum
fundamental natural frequency by applying Courant’s maximum–minium principle. They
have also investigated the minimum support stiffness leading to the maximum possible
value of fundamental eigenvalue. Son and Kwak [3] have derived sensitivity of eigenvalues
with respect to the change of boundary conditions using the material derivative concept,
and the results have been applied to find the optimal support locations for the maximum
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Figure 1. A beam supported by m points of stiffness k at xi , i=1, . . . , m.

fundamental natural frequency of a plate structure. Pitarresi and Edwardo [4] have
proposed an approach to improve initial guesses of support positions for a vibrating circuit
card to increase its fundamental natural frequency. Narita [5] has studied the effects of
the point constraint position of cantilever plates on the vibration characteristics. Liew and
Lam [6] have studied the effects of the stiffness of elastic support constraints on the
vibration response of plates.

From previous works [1, 2], it is apparent that the optimal support positions for the
maximum fundamental eigenvalue are dependent on its support stiffness. Thus, it is of
importance to study the pattern of optimal support positions by varying the support
stiffness.

This paper is concerned with finding the loci of multiple support positions of a structure
by varying its support stiffness for the maximum fundamental eigenvalue and developing
the related principles. First, after defining a model, the concept of limit eigenvalue is
introduced. Then, a cantilever plate having one support is examined to study the typical
pattern of locus. From the results, it is shown that there are some characteristic points
which govern the starting and ending points of the loci. Multiple sets of optimal support
positions can be obtained with some discrete values of stiffness. Thus, the optimal loci can
be found by connecting those points. As an example, the loci of a cantilever beam and
cantilever rectangular plate are obtained and discussed.

2. MODEL AND LIMIT EIGENVALUE

The models used in this study are a beam and a plate structure having multiple supports
with a certain value of stiffness which maximize those fundamental eigenvalues. Figures 1
and 2 show these structures. Two major assumptions are used in this study. First, the
support has a translational spring which acts only in the direction of transverse
displacement. Second, all the supports have identical stiffnesses.

There is a well-known theorem regarding the limit eigenvalue. The limit eigenvalue is
the upper bound of potential fundamental eigenvalue achieved by adding m supports to
the original structure. The Courant–Fisher theorem [7] states that all the eigenvalues of
a structure increase if m supports with positive stiffness are placed on that structure, and

Figure 2. A plate supported by m points of stiffness k at pi =(xi , yi )T, i=1, . . . , m.
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Figure 3. The locus of the optimal support position as support stiffness is increased. ––, Nodal line of the
second mode of the original structure; , k=1·72×104 N/m; w, k=4×104 N/m; W, K=1·74×105 N/m.

the modified eigenvalues are bounded as

l0
i E li E l0

i+m i=1, 2, . . . , (1)

where l0
i and li denote the ith original eigenvalue and the ith modified eigenvalue,

respectively. The boundness of eigenvalues of the modified structure can also be explained
by the eigenvalue separation principle in the case of rigid supports. From equation (1) it
is seen that the fundamental eigenvalue of the modified structure cannot exceed l0

m+1 after
adding m supports, and l0

m+1 is the limit eigenvalue. In addition, the fundamental mode
shape of the modified structure, f1, should be the (m+1)th mode shape of the original
structure, f0

m+1, in order for l1 to be l0
m+1. This fact means that the necessary condition

of l1 = l0
m+1 is that the supports must be placed on the nodal line of f0

m+1.

3. TYPICAL PATTERN OF LOCUS

To clearly investigate the pattern of a locus while varying the support stiffness, a simple
example is used. Figure 3 shows a cantilever plate to be constrained by one additional
support. The size of the plate is 3×1 m having a thickness of 0·05 m. The elasticity, mass
density, and Poisson ratio are 200×109 N/m2, 7800 kg/m3 and 0·3, respectively. In this
case, the problem is to find the locus of support, where its fundamental natural frequency
becomes maximum, as its stiffness is varied.

The result is illustrated in Figure 3. The dotted line in Figure 3 shows the nodal line
of the second mode of the original structure. When the supporting point stiffness is very
low (almost zero), the optimum support position is (3, 0·5). The support position remains
fixed until the stiffness is increased to 1·72×104 N/m. As the stiffness is increased further,
the optimal position moves toward the second nodal line following the horizontal centre
line of the plate. Finally, it reaches a point on the second nodal line when the stiffness
becomes 1·74×105 N/m. That point and the stiffness will be called the separation point
and the critical stiffness, kc . Beyond the critical stiffness, the optimal support position is
not determined uniquely but it can be any point within a certain region on the second nodal
line of the original structure (f0

2 ), and its fundamental eigenvalue is saturated to the second
eigenvalue of the original structure (l0

2 ). The result is clearly plotted in Figure 4, showing
the y co-ordinate of the support position and the maximized fundamental eigenvalues with
an increase in the support stiffness. The region of optimal support position becomes wider
as the stiffness is increased above the critical value kc .

Thus, the pattern of the locus is characterized as follows. (1) It starts from the optimal
support position when the support stiffness is almost zero. (2) Then it moves towards the
second nodal line of the original structure as the support stiffness is increased. (3) It reaches
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Figure 4. y co-ordinate of the support position and resulting fundamental eigenvalues as the support stiffness
is varied. ——, yopt ; – · · –, lopt .

a point on the second nodal line when the stiffness is increased to its critical stiffness (kc ),
and the optimal eigenvalue is saturated at its limit eigenvalue, the second eigenvalue of
the original structure (l0

2 ). (4) When the support stiffness is further increased above the
critical value, the optimal support position is not determined uniquely but can be placed
at any point within a certain region on the second nodal line. The region becomes wider
as the stiffness goes beyond the critical value, and the optimal eigenvalue is limited to the
second eigenvalue of the original structure.

4. PROCEDURES TO FIND LOCUS

In this section, the procedure to calculate the loci of m optimal support positions within
a structure is studied.

From the results in the previous section, the procedures for searching the optimal loci
can be summarized as follows. (1) Find the optimal positions when the support stiffness
is almost zero. (2) Investigate the existence condition where l1 can be increased to l0

m+1.
(3) If the existence of condition (2) is satisfied, find the separation points and its critical
stiffness. (4) If the condition is not satisfied, find the optimal support positions when the
support stiffness is infinite. (5) Find the optimal support positions by increasing the
stiffness from zero to the critical stiffness or infinite stiffness. (6) Connect those results to
complete the loci.

For this purpose, first the free vibration equation of a structure having multiple supports
is constructed and the structural design modification technique is utilized to calculate
eigenvalues. Then the condition of procedure (2) is provided and an efficient method to
obtain the critical stiffness and separation points is suggested for procedure (3). Also an
optimization problem is formulated and eigenvalue sensitivity with respect to the support
positions is derived for procedures (4) and (5).

4.1.   

The free vibration equation can be formulated in both a variational form and in a
discrete form. Both forms are used in this work because each has its own advantages
depending on the problem in hand.
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The variational form of the free vibration equation of a structure having m supports
with stiffness k at p1, p2, . . . , and pm is

a(u, ū)− ld(u, ū)+ s
i=1,m

ku(pi )ū(pi )=0. (2)

The eigenvalue, l, and the eigenfunction, u, must satisfy equation (2) for all ū $ Uad , where
Uad denotes the set of admissible variations. The kinetic and potential energy bilinear forms
for beam and plate, a(,, ,) and d(,, ,), are found in the book authored by Haug et al.
[8].

The discrete form of the free vibration equation is

(K− lM)u+ kPPTu= 0, (3)

where M and K are mass and stiffness matrices, respectively, obtained from the finite
element analysis, u denotes the displacement vector, and P is a matrix whose column vector
associates the displacement vector with the support position such as

PT
i u= u(pi ), (4)

where Pi is the ith column vector of P.
One additional consideration that should be accounted for is the reanalysis technique,

since almost all computing efforts are used in solving equation (3) for lots of expected
support positions. The dimension of equation (3) can be greatly reduced by using the
reanalysis technique from the structural design modification method which utilizes
the existing modal properties of the original structure as the basis vectors to span the
displacement vector in a smaller space than the original space [4, 9].

4.2.     k3 0

From the theory of small modification or sensitivity analysis [8], the fundamental
eigenvalue after adding m supports, whose stiffnesses are almost zero, can be expressed
as

l1 = l0
1 + l0

1 {(f0
1 (p1))2 + (f0

1 (p2))2 + · · ·+ (f0
1 (pm ))2}dk. (5)

Thus, the optimal support positions for the case of almost zero stiffness are the maximum
displacement positions of f0

1 . This means that all of the loci of m supports start from that
point. It should be noted that equation (5) holds for a structure having only a single
fundamental eigenvalue.

4.3.     

It is not always possible to increase l1 of a structure to l0
m+1 after placing m supports

on the nodal line of f0
m+1. This condition can be easily checked by solving an optimization

problem as

min (l1 − l0
m+1 ((p1, p2, . . . , pm ))2 (6)

subject to p1, p2, . . . , and pm $ VNL,

and k=a, where VNL is the nodal line of f0
m+1. The l1 can be increased to l0

m+1 when
the optimal value of equation (6) becomes zero.

To derive critical stiffness and separation points, another condition is developed for
l1 = l0

m+1 by placing m supports on the nodal line of f0
m+1.
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[Existence condition of l1 = l0
m+1.] Let p1, p2, . . . , and pm be the positions of m supports

on the nodal line of f0
m+1. If all non-zero solutions, k, of

Det (K− l0
m+1 M+ kPTP)=0 (7)

are positive, then l1 can be increased to l0
m+1 by the supports. Moreover, the minimum

stiffness for l1 = l0
m+1 is max (k).

The derivation of the existence condition of l1 = l0
m+1 is based on the property of the

inertia of a matrix [7]. First, it is assumed that l0
m+1 is one of the eigenvalues of the structure

after placing m supports to the nodal line of f0
m+1. Then, the characteristic equation

becomes

Det (K− l0
m+1 M+ kPPT)=0. (8)

The characteristic equation is only a function of the support stiffness, k, and there are m
non-zero k satisfying that equation, since the rank of PPT is m. Let us define the number
of negative eigenvalues of the matrix of equation (8) as

p(k)0 p(K− l0
m+1 M+ kPPT). (9)

It is apparent that

p(0)=m, (10)

since there are m original eigenvalues less than l0
m+1. The eigenvalues of the matrix of

equation (8) always rise as k is increased because of the positive semi-definiteness of kPPT.
To increase l1 to l0

m+1, the following condition applies to kM :

p(k)=0 for ke kM . (11)

Let k+
i be the ith positive k satisfying equation (8), then equation (9) becomes

p(k+
i )=m− i. (12)

Thus, there must be m positive k to satisfy equation (11). Furthermore, the minimum
stiffness, kM , is the maximum k satisfying equation (8) in this case.

The direct use of equation (7) in obtaining k is inefficient because the dimension of the
matrix is very large. There is an efficient method using the modal properties of the original
structure. Equation (7) can be transformed as [10]

Det [I+ kHm (l0
m+1)]=0. (13)

Hm is defined as

Hm =PT[FT(K− lM)F]−1P=PT(L− lI)−1P, (14)

where L is the diagonal matrix composed of the eigenvalues of the original structure and
F is the eigenmatrix. Since all supports are placed on the nodal line of f0

m+1, P and f0
m+1

are orthogonal. Thus, the (m+1)th modal property is excluded in deriving equation (14).
The dimension of equation (13) is only m.

If there are support positions satisfying the existence condition of l1 = l0
m+1, then the

separation points and the critical stiffness can be obtained from

min max (k(p1, p2, . . . , pm )) (15)

subject to [(k)q 0

p1, p2, . . . , and pm $ VNL ,

where k represents the non-zero solutions of Det (K− l0
m+1 M+ kPTP)=0.
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4.4.     0Q kQ kc  0Q kQa

The loci are built by connecting the optimal support positions obtained at each discrete
value of the stiffness in the range of 0Q kQ kc or 0Q kQa. The optimal support
positions with k are obtained by solving the optimization problem as

max min (l(p1, p2, . . . , pm )) (16)

subject to a(u, ū)− ld(u, ū)+ s
i=1, m

ku(pi )ū(pi )=0

p1, p2, . . . , and pm $ V,

where V is the domain of the structure. To solve the optimization problem effectively, it
is essential to know the eigenvalue sensitivity with respect to the support positions.

Several authors have derived eigenvalue sensitivity for a beam structure with respect to
its support positions. They have used a continuum approach with material derivative
concept, normal mode method, or variational principle of Rayleigh’s quotient with the
Lagrange multiplier [11–13]. The derived sensitivity equation shows that it is proportional
to its reaction forces and slopes of the original mode shape at the supports.

In this study, previous work is extended for general structures such as a plate. The key
idea is the use of the variational form of the free vibration equation which augments the
support stiffness term explicitly as in equation (2).

Figure 5 shows a plate having multiple supports, and each support moves in the direction
of vi . For the sake of simplicity in deriving the sensitivity without loss of generality, it is
initially pretended that the plate has one support with stiffness k at p. After substituting
ū= u into equation (2), the free vibration equation becomes

a(u, u)− ld(u, u)+ ku2(p)=0. (17)

The variation of p can be expressed as

dp= vdz, (18)

where v and dz are the direction and the magnitude of the variation, respectively. After
taking variation of equation (17), the eigenvalue sensitivity becomes

dl=2[a(u, du)− ld(u, du)+ ku(p)d(u(p))]. (19)

Figure 5. A plate having m supports when the ith support moves in vi direction.
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Figure 6. Loci of m optimal supports as k is increased and the corresponding optimal eigenvalues of a
cantilever beam. ——, Loci, xopt ; – · · –, optimal eigenvalue, lopt ; W, nodal points of f0

m+1. (a) m=1; (b) m=2;
(c) m=3; (d) m=4.

The mass normalizing condition is used in the derivation. By definition, the variation of
eigenfunction at p can be expressed as

d(u(p))= u(p+ vdz)+ du(p+ vdz)− u(p). (20)

Equation (20) is further simplified by expanding the eigenfunction at p and neglecting
higher order variations as

d(u(p))=9u(p)Tdz+ du(p), (21)

where 9 is the gradient operator. Since du is also a member of admissible function, it can
be substituted into equation (2) for ū to obtain

a(u, du)− ld(u, du)+ ku(p)du(p)=0. (22)

By combining equations (19), (21) and (22), the eigenvalue sensitivity becomes

dl=2ku(p)9u(p)Tvdz. (23)
Finally, if there are m supports and each of them is moving in vi direction with dzi , then
the sensitivity becomes

dl=2k s
i=1,m

u(pi )9u(pi )Tvi dzi . (24)

Similarly, the sensitivity with infinite stiffness can be obtained as

dl=−2 s
i=1,m

fi 9u(pi )Tvi dzi , (25)
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Figure 7. Loci of m optimal supports as k is increased and the corresponding optimal eigenvalues of a
cantilever plate. – · · –, Nodal line of f0

m+1; W, separation points for m=1, 2, 4, and end points for m=3;
, departing points from the edge; Dk=2·5×105, increment of k. (a) m=1; (b) m=2; (c) m=3; (d) m=4.
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where fi is the support reaction force. Thus, the eigenvalue sensitivity with respect to the
support positions is proportional to reaction forces and slopes of eigenfunction along the
moving direction at supports.

The optimization problem of equation (16) is carried out using a steepest decent approach.

4.5.     kc Q kQa
In the case of kc Q kQa, the optimal support positions are not determined uniquely but

they can be placed at any point within a certain region of the nodal line of f0
m+1.

Thus, if a designer wants to determine unique support positions, the object of the
optimization problem should be modified, such as shifting the second eigenvalue upwards
as high as possible while l1 remains at l0

m+1.

5. EXAMPLES

The proposed method is tested to find the locus of optimal support positions for a
cantilever beam and a cantilevered rectangular plate.

5.1.  

The loci of m optimal support positions of a cantilever beam, as shown in Figure 1, are
obtained using the suggested method. The length, width, and thickness of the beam are
1, 0·1, and 0·05 m, respectively. The mass density is 7800 kg/m3 and the elasticity is
200×109 N/m2. Fifty elements are used in meshing the finite elements and 30 original
modal properties are used in reanalysis. Figure 6 shows the loci with respect to support
stiffness and the corresponding optimal eigenvalues when m=1, 2, 3, 4. In all cases, the
fundamental eigenvalue can be increased to l0

m+1 by adding m supports. It is interesting
to note that there are m nodal points and these become separation points. All of the loci
start from x=1, since this point is the maximum displacement point of f0

i . The loci move
to the nodal points of f0

m+1 as the stiffness increases. Finally, they reach the nodal points
when the stiffness is increased to its critical stiffness as shown in Figure 6. After reaching
the critical stiffness, the optimal support positions remain fixed on the nodal points and
the optimal eigenvalue is also unchanged as l0

m+1.

5.2.  

The loci of m optimal support positions of a cantilevered plate, as shown in Figure 2,
are obtained using the proposed method. The plate dimensions are 1×1 m, with a
thickness of 0·05 m. The mass density, elasticity and Poisson ratio are 7800 kg/m3,
200×109 N/m2 and 0·3, respectively. Four-hundred elements are used in meshing the
finite elements and 100 original modal properties are used in reanalysis. Figure 7 shows
the loci and optimal eigenvalues as the stiffness is increased with m=1, 2, 3, 4. All
the loci start from (1, 0·5) because this point is the maximum displacement point of
f0

1 . It is found that the fundamental eigenvalue can be increased to l0
m+1 in all cases

except when m=3.
Form=1, the locus departs from (1, 0·5) and approaches the separation point, (0·96, 0·5),

which is on the nodal line of f0
2 . For m=2, the loci start from (1, 0·5) and move

along the right edge and depart from that edge as the stiffness is increased. After that
they move to the separation points, (0·78, 0·23) and (0·78, 0·77) which are on the nodal
line of f0

3 . The loci move in a symmetrical manner about the horizontal centre line
of the plate.

In the case of m=3, no points on the nodal line of f0
4 satisfy the existence

condition of critical stiffness. Thus, it is anticipated that the optimal eigenvalue cannot
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Figure 8. The first two mode shapes of the optimized structure for m=3. (a) First mode shape (l1 =0·958l0
4 );

(b) second mode shape (l2 = l0
4 ).

reach its limit eigenvalue. To verify this fact, the optimal points of support with infinite
stiffness are found on the nodal line of f0

4 . These points are (0·59, 0·21), (1, 0·28) and
(0·75, 0·76). The optimal eigenvalue becomes 95·8% of its limit eigenvalue (l0

4 ), and the
second eigenvalue becomes its limit eigenvalue in this case. The first two mode shapes of
the optimized structure are shown in Figure 8. From the results, it is clear that the optimal
mode cannot be increased to f0

4 but it becomes the mode shown in Figure 8(a). To
determine the end points of loci, the optimal supports for k=a are found on the whole
domain of the structure. These points are (0·60, 0·19), (0·98, 0·26)
and (0·75, 0·77). The optimal eigenvalue becomes 98·0% of its limit eigenvalue, and the
second eigenvalue becomes the same as the first eigenvalue. The bimodal phenomenon is
well known in the area of finding optimal support positions [1–3]. The loci start from
(1, 0·5) and move to the optimal points for infinite stiffness in a somewhat complex manner
as shown in Figure 7(c).

For m=4, the loci start from (1, 0·5) and move along the edge in a symmetrical manner
as the stiffness is increased, as shown in Figure 7(d). After that, the loci depart from the
edge and approach the separation points, ( 0·48, 0·5), (1, 0·5), (0·75, 0·15), and (0·75, 0·85)
which are all on the nodal line of f0

5 .

6. CONCLUSIONS

A procedure is proposed to find the loci of optimal support positions of a structure,
while varying its support stiffness, in which the fundamental eigenvalue of the structure
is maximized. To increase the fundamental eigenvalue to its limit eigenvalue by adding
supports, the supports should be placed on the (m+1)th nodal line of the original
structure and at the same time a certain existence condition must be satisfied. The loci start
from the maximum displacement position of the first eigenfunction of the original
structure. The end positions of the loci are located on the nodal line of the (m+1)th
eigenfunction if the fundamental eigenvalue of the modified structure can be increased to
the (m+1)th eigenvalue of the original structure. Or, these positions are the optimal
support positions in the case of infinite support stiffness. The optimal support positions
are within a certain region if the end positions are found on the nodal line of the (m+1)th
eigenfunction.

REFERENCES

1. D. S and Z. M 1979 Computer Methods in Applied Mechanics and Engineering 19,
333–349. Optimal design of vibrating beams with unspecified support reactions.



.-.   .-. 812

2. B. A and N. Off 1988 Journal of Sound and Vibration 120, 457–463. Minimum stiffness
of optimally located supports for maximum value of beam eigenfrequencies.

3. J. H. S and B. M. K 1993 AIAA Journal 31, 2351–2357. Optimization of boundary
conditions for maximum fundamental frequency of vibrating structures.

4. J. M. P and A. V. D E ASME Journal of Electronic Packaging 115, 118–123.
A design approach for the systematic improvement of support locations for vibrating circuit
cards.

5. Y. N 1985 Journal of Sound and Vibration 102, 305–313. The effect of point constraints
on transverse vibration of cantilever plates.

6. K. M. L and K. Y. L 1994 Journal of Sound and Vibration 174, 23–36. Effects
of arbitrarily distributed elastic point constraints on vibrational behavior of rectangular plates.

7. P. L and M. T 1985 The Theory of Matrices. Orlando: Academic Press;
second edition.

8. E. J. H, K. K. C and V. K 1986 Design Sensitivity Analysis of Structural Systems.
Orlando: Academic Press.

9. Y. M. R, S. G. B and J. B 1988 Journal of Sound and Vibration 125, 203–209.
Structural modifications in truncated systems by the Rayleigh–Ritz method.

10. Y. G. T and E. K. L. Y 1989 ASME Journal of Dynamic Systems, Measurement, and
Control 111, 403–408. A method for modifying dynamic properties of undamped mechanical
systems.

11. H. C. C and J. W. H 1992 AIAA Journal 30, 2138–2147. Eigenvalue sensitivity analysis
of planar frames with variable joint and support locations.

12. B. P. W 1993 AIAA Journal 31, 791–794. Eigenvalue sensitivity with respect to location of
internal stiffness and mass attachments.

13. Z.-S. L, H.-C. H and D.-J. W 1996 AIAA Journal 34, 864–866. New method for deriving
eigenvalue rate with respect to support location.


